Measuring the Impact of Electronic Library Materials on the University’s Research Mission

Michael Rawls
Budget and Assessment Director
Virginia Commonwealth University Libraries
Library Assessment Conference, Charlottesville, VA
October 29, 2012
Scholarly Research Productivity

- Expenditures for Electronic Materials
- Institutional Characteristics
- Other Library Variables

VCU Libraries
Virginia Commonwealth University
sea-change

↑ +92% increase in electronic materials expenditures

↑ Electronic materials as percent of total materials expenditures

- 2005 = 46%
- 2010 = 70%
stating the obvious

How Electronic Materials Improve Research Productivity

- Access from anywhere
- Instant access
- Easily stored and retrieved
- Most always available
- Time-motion advantage
the data

DATASET

• 271 Carnegie-classified US doctoral institutions

DATA COLLECTION, 2005–2010

• Number of Journal Articles: WEB OF KNOWLEDGE
• Library Characteristics: ACRL TRENDS AND STATISTICS
• Institutional Characteristics: IPEDS
Library Characteristics

Variables from ACRL Survey

- Electronic Material Expenditures
- Total Library Expenditures
- Total Library Material Expenditures
- Professional Salaries
- Library Personnel FTE
- Various Serials-Related Measures
- Various Volume and Title Count Measures
- ILL Borrowing
Institutional Characteristics Variables from IPEDS

- Faculty FTE
- Research Expenditures
- Instructional Salaries
- Research Salaries
- Total Revenue
- Grant Revenue
- PhDs Awarded
- Year-End Endowment
research design

Electronic Material Exp. + Other Library Variables + Other University Variables = Number of Journal Articles
initial model equation

-1224.087 Constant
+ .000511 x (Electronic Library Materials)
+ 18.084 x (Professional Librarians FTE)
+ .00000176 x (Total University Revenue)
+ .709 x (Faculty FTE)
+ .0000176 x (Research Expenditures)
+ 23265.67 x (1 For Harvard, 0 Everyone Else)

= NUMBER OF JOURNAL ARTICLES
REGRESSION OUTPUT

(adj. r-square .922)

Initial Model

<table>
<thead>
<tr>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
</tr>
<tr>
<td>(Constant)</td>
<td>-1224.087</td>
<td>282.900</td>
</tr>
<tr>
<td>Elect_Mat_Exp</td>
<td>.000511</td>
<td>.000</td>
</tr>
<tr>
<td>Pro_Lib_FTE</td>
<td>18.084</td>
<td>6.312</td>
</tr>
<tr>
<td>Res_Exp</td>
<td>.0000176</td>
<td>.000</td>
</tr>
<tr>
<td>Total_Revenue</td>
<td>.00000176</td>
<td>.000</td>
</tr>
<tr>
<td>Fac_FTE</td>
<td>.709</td>
<td>.340</td>
</tr>
<tr>
<td>Harvard</td>
<td>23265.67</td>
<td>3262.538</td>
</tr>
</tbody>
</table>
relative impact of library measures

.185 Electronic Material Expenditures

.153 Total Library Expenditures

.112 Library Material Expenditures
best fit model equation

\[-1196.806 \times \text{Constant} + 0.000486 \times (\text{Electronic Library Materials}) + -0.000271 \times (\text{Non-Elect. Library Materials}) + 29.450 \times (\text{Professional Librarian FTE}) + 0.0000162 \times (\text{Research Expenditures}) + 0.0000218 \times (\text{Total University Revenue}) + 0.648 \times (\text{Faculty FTE}) + 22268.145 \times (1 \text{ for Harvard, } 0 \text{ for Everyone Else})\]

= NUMBER OF JOURNAL ARTICLES, 2005-10
best fit model

REGRESSION OUTPUT

(adj. r-square .923)

<table>
<thead>
<tr>
<th></th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
</tr>
<tr>
<td>(Constant)</td>
<td>-1196.806</td>
<td>278.576</td>
<td></td>
</tr>
<tr>
<td>Elect_Mat_Exp</td>
<td>.000486</td>
<td>.000</td>
<td>.176</td>
</tr>
<tr>
<td>Non_Elect_LM_Exp</td>
<td>-.000271</td>
<td>.000</td>
<td>-.098</td>
</tr>
<tr>
<td>Pro_Staff</td>
<td>29.450</td>
<td>7.350</td>
<td>.207</td>
</tr>
<tr>
<td>Inst_Res_PS_FTE</td>
<td>.648</td>
<td>.335</td>
<td>.088</td>
</tr>
<tr>
<td>Tot_Rev</td>
<td>.00000218</td>
<td>.000</td>
<td>.252</td>
</tr>
<tr>
<td>Res_Exp</td>
<td>.0000162</td>
<td>.000</td>
<td>.337</td>
</tr>
<tr>
<td>Harvard</td>
<td>22268.145</td>
<td>3229.301</td>
<td>.179</td>
</tr>
</tbody>
</table>
best fit model equation

-1196.806 (Constant)
+ .000486 x $7,077,938 (Elect Lib Mat)
+ -.000271 x $6,316,808 (Non-Elect Lib Mat)
+ 29.450 x 95 (Pro Lib Staff FTE)
+ .0000162 x $254,688,800 (Research Expenditures)
+ .00000218 x $2,048,342,200 (Total University Revenue)
+ .648 x 2,322 (Faculty FTE)
+ 22268.145 x 0 (Not Harvard)

= 13,425 ARTICLES PREDICTED, 2005-2010
best fit model equation

-1196.806 (Constant)
+ 0.000486 x $8,077,938 (Elect Lib Mat)
+ -0.000271 x $5,316,808 (Non-Elect Lib Mat)
+ 29.450 x 95 (Pro Lib Staff FTE)
+ 0.0000162 x $254,688,800 (Research Expenditures)
+ 0.00000218 x $2,048,342,200 (Total University Revenue)
+ 0.648 x 2,322 (Faculty FTE)
+ 22268.145 x 0 (Not Harvard)

= 14,186 ARTICLES PREDICTED, 2005-2010
(diff. 761 or 126/yr)
next steps

Incorporate feedback

Replicate in Academic Analytics

Qualitative investigation